What do you prefer?
Using Preferences to Enhance Learning Technology

Philipp Kérger, Daniel Olmedilla, Fabian Abel, Eelco Herder, and Wolf Siberski

Abstract— While the growing number of learning resources
increases the choice for learners on how, what and when to
learn, it also makes it more and more difficult to find the
learning resources that best match the learners’ preferences and
needs. The same applies to learning systems that aim to adapt or
recommend suitable courses and learning resources according to
a learner’s wishes and requirements. Improved representations
for a learner’s preferences as well as improved search capabilities
that take these preferences into account leverage these issues. In
this paper, we propose an approach for selecting optimal learning
resources based on preference-enabled queries. A preference-
enabled query does not only allow for hard constraints (like
’return lectures about Mathematics’) but also for soft constraints
(such as ’I prefer a course on Monday, but Tuesday is also
fine’) and therefore allows for a more fine-grained representation
of a learner’s requirements, interests, and wishes. We show
how to exploit the representation of a learner’s wishes and
interests with preferences and how to use preferences in order
to find optimal learning resources. We present the Personal
Preference Search Service (PPSS), which offers significantly
enhanced search capabilities for learning resources by taking
the learner’s detailed preferences into account.

Index Terms— preference, learning resource, metadata, per-
sonalization

I. INTRODUCTION

Personalization of online learning has been a hot issue in the
elearning community since the 1990s. By making use of the
learners’ individual goals, preferences, interests, and knowledge,
the interaction with the students can be adapted to their individual
needs. Personalization can serve several goals, including tailoring
of information presentation and helping learners to find informa-
tion by support for browsing and search [1]. In particular the latter
goal has become very relevant, now that learning has become a
lifelong activity—in our knowledge-based society workers need
to continuously increase their knowledge and competences to
keep up-to-date [2].

The community of lifelong learners is varied, as is the variety
of learning activities that are offered—ranging from targeted
group-based courses to self-organized home-based learning mak-
ing use of on-line material. These courses might target students
with specific cognitive abilities and learning styles [3]. Moreover,
due to other obligations—professional and personal—, learners
may have specific constraints with respect to study load, location
and the time of course delivery. It is a known fact that learners
may have a lot of different preferences of all these kinds [4]
and it is a challenge to consider all these particularities in the
personalization process.

For this reason, we present a technique based on Preference
Handling for representing a learner’s preferences and exploit this

Authors are with the L3S Research Center, Hannover, Germany
E-mail: {kaerger,olmedilla,abel,herder,siberski} @L3S.de

representation for selecting learning resources that best match
these preferences. This technique is not only relevant during
the process of searching for learning resources, but also for the
adaptation of course delivery to the goals, preferences, interests,
and knowledge that are stated in the form of preferences and
stored in the learner model.

Search capabilities in educational repositories and networks
have been improved in recent years by the introduction of
personalization and semantic-based queries. These techniques are
typically realized by extending the query with hard constraints,
which are either stored in the learner model or manually specified
by the learner during the search process. These hard constraints
represent the user’s wishes, that is, conditions that should be
fulfilled. But a closer look reveals that in most cases a learner’s
constraints are not hard constraints. Typically, a user may want
to express that she wants “courses that are in English, but
otherwise German would also suffice, and that courses preferably
should be given on Monday rather than Tuesday or Friday”.
The words “preferably”, “otherwise” and “rather than” indicate
soft constraints using which a user specifies what she prefers,
in other words her preferences. These preferences represent a
list of alternatives that can be used to filter out suboptimal,
non-relevant results, and let the learner concentrate on the most
suitable alternatives. For example, if two courses are found, both
of them on Monday, and one of the courses is in English and the
other is in German, intuitively the latter can be discarded, since
given the same (or less preferred) conditions, the user prefers
English over German. This way, only the most optimal results
according to the user’s preferences are returned. This improves
the satisfaction of the users and reduces the time they must spend
in order to scan large query result sets that also contain non-
preferred (suboptimal) options.

It is important to note that the term user preferences has been
extensively used in the field of user modeling [5] and adaptive
hypermedia [3], [6]. Typically, these user preferences are a set
of properties that specify the learners’ goals, interests, and needs
(and which are added in the queries as hard constraints or used to
compute rankings). By contrast, our method is more expressive:
it allows these learner properties to be modeled as soft constraints
and allows users to indicate which properties they prefer to
another by allowing for a preference order.

This paper describes how preferences can be used to create a
fine-grained model of a learner’s needs, which represents more
accurately their wishes and interests. It shows how preference-
based queries can be used in order to improve the selection of
learning resources. Further, we show how to efficiently retrieve
learning resources that best match the user’s preferences, while
discarding suboptimal solutions. In [7], we provided a first idea
on how to use preferences for searching learning resources. In
this paper, we base our elaborations on [7] and further refine it by

allowing for more expressive preference compositions and a more
flexible and powerful approach for expressing partial orders. In
particular this paper adds the following contributions to [7]:

e support for preference compositions in order to be able
to combine two types of multidimenional compositions
(Iexicographic and Pareto).

o support for a more flexible and powerful specification of
partial orders in the queries, by including a representation
of placeholders in its syntax and evaluation semantics.

o development and integration of the aforementioned exten-
sions in our implementation.

« provision of more (and more detailed) definitions, descrip-
tions, examples, etc.

The paper is organized as follows. In Section II we motivate
our approach by a running scenario. Details about preferences,
theoretical background and the use of preferences in query
processing are presented in Section III. Section IV shows how
preferences support the selection of learning resources by apply-
ing the preference theory to our running scenario. In Section V we
describe our prototype implementation and a first experimental
evaluation. Finally, Section VI compares our approach with
existing initiatives and Section VII concludes the paper.

II. MOTIVATION SCENARIO

In the following, we picture a scenario to motivate our ap-
proach, which will be used later in the paper to demonstrate
how preference-based search works and how preferences support
learners in finding suitable courses. We will use this example
throughout the paper for illustrating our approach.

Bob has just bought his first digital camera and now he is
looking for a course about photography. He is not sure what
different kinds of courses are available, but he has certain ideas
of his likes and dislikes. Figure 1 summarizes the preferences
mentioned in the scenario.

A. For instance, Bob prefers a class-room course, in which he
can learn with and get inspired by fellow learners, above a rather
solitary distance learning course.

B. Bob is neither a professional in photography nor does he plan
to become one, so he does not insist on gaining a certificate. But
should there be a course that does provide a certificate at the
same or better conditions (price, etc.), he would prefer to take
the one with the certificate.

C. However, he definitely would not like to have to pass an exam
in order to get the certificate.

D. Bob believes that he will enjoy doing image processing with
his computer. Hence, he also wants a course that comprises some
kind of homework.

E. Bob wants a course offered in the evening. He would prefer a
course on one of the working days, except on Monday when he
has a weekly appointment with a friend for jogging. If needed,
he could reschedule this appointment, though. He also likes to
keep the Friday evening free for meeting with his chess club. If
there are no courses available during the week, he might consider
a course on Saturday or Sunday.

F. Bob would like the course to take place once a week. A course
with two meetings per week, or one meeting every two weeks,
would be fine as well. But he absolutely dislikes weekend block
courses, as he is not willing to stay away from home for a longer
time over the weekend.

G. However, since he just got his new camera he wants the course
to start as soon as possible as not to lose any time.

H. As Bob is an avid cyclist, he does not mind riding up to 10
km to the course, provided that he can follow a scenic track with
cycle lanes. If the course takes place in the south of the city
center he can take the way through the park, otherwise he has to
struggle through busy traffic.

I. Concerning financial issues, Bob also has some constraints: he
is not willing to pay more than 100 euros for the course.

This combination of different interests and likes and dislikes
is typical for complex domains such as courses: more often than
not people are not able to exactly specify their wishes in terms of
hard constraints. The expressions used in our scenario show that
Bob has merely an idea of what he is looking for. These kind of
soft constraints are useful for users to define their expectations,
in particular when they do not yet know what exactly they are
looking for. Although this set of hard and soft constraints is a
common way of how a user describes her wishes, it is so far not
possible to specify such complex search requests with current
search interfaces. Moreover, from a learner modeling point of
view it would be much more accurate to allow for these more
vague statements about a user’s wishes.

A learning platform that provides extended search capabilities
to take into account all the known or explicitly provided hard and
soft constraints is desirable. With such a platform, Bob would
be able to specify some of his ideas of the desired course: it
should deal with digital photography, it does not need to provide
a certificate, it should start immediately, etc. Additionally, the
system exploits its knowledge about Bob, such as his age, which
languages he prefers beyond his native language. It also uses
Bob’s preferences gained from his past interactions, such as his
fondness of meeting people, the location where he lives, his
regular meeting on Fridays and Mondays. By taking all these
constraints into account, the system would be able to perform a
query comprising most of the particularities in Bob’s idea of a
course. Probably there will be no course that matches all of the
constraints, but the system will provide Bob with a small result
set, containing the courses with—according to his preferences—
the lowest deviation from the given preferences and therefore
from his ideal course.

III. PREFERENCES

Preferences are a way to model a user’s needs, wishes, and ex-
pectations. Beyond the specification of a preferred, single desired
value or behavior (such as “I like green.”) the notion of preference
that we suggest allows for alternatives (such as “If possible, I
prefer green. Otherwise, yellow is fine as well.”). Therefore,
preferences provide means for expressing soft constraints instead
of hard constraints. These preference orders, which are built up
by assembling several preferred alternatives, comprise precise
knowledge about what a user would like to get. But the term
“if possible, ...” already suggests that precise and meaningful
semantics of these preference orders has to be provided: the soft
constraints have to be relaxed step by step until the most preferred
object, or rather the most preferred combination of attributes, is
found. In this section, we will first outline some properties and
different kinds of preferences. Then we will introduce the theory
of preferences and show how their semantics deliver the desired
behavior of a constraint relaxation.

B » C
face to face certificate no exam homework
distance no certificate exam no homework
G E H
course starts Tuesday Wednesday Thursday south, 10 km
immediately \ L /
Monday south, < 10 km
. Sunday Saturday i
course starts in south, nearby
a couple of \
weeks Friday
north, nearby
F |
once a
week no cost north, < 10 km
twice a once every north {0 km
week two weeks L ’
100 € south, >10 km north, >10 km
block
course

Fig. 1.

Bob’s preferences, represented as Hasse diagrams of the preference relations. Each preference is represented by a directed connected graph. The

direction of an edge represents that the node at the beginning is preferred to the node the edge points to. Non-connected nodes represent indifferent alternative

values.

A. Properties of Preferences

In this section we introduce some basic properties and require-
ments that a preference model may have. We will revisit these
properties throughout the paper.

Total vs. partial orders. It may be difficult for Bob to define
a total order preference for all the attributes of his desired course.
It is a time consuming process and it may well be the case that he
is indifferent for some attribute. Partial order preferences (such
as Bob’s preference concerning the day of the week) allow for
indifferences and are more general than total order preferences
(such as the one concerning a course’s certificate). In Figure 1
we depicted the partial orders of Bob’s preferences in the form
of Hasse diagrams [8].

Conditional Preferences. A preference may vary depending
on some attributes. For example, Bob preference concerning the
location of the course does not only include the length of his
bike ride; in addition, it includes preferences on the direction of
the ride as well (in this case, whether it is north or south).

Quantitative vs. qualitative preferences. In a quantitative
(weighted or numerical) model of a user’s preferences, the value
of to what extent a user prefers one alternative over another is
explicitly given. In our scenario, none of the preferences that Bob
provided were quantitative. From a usability point of view, it is
not desirable that a user has to specify a numerical representation
for each attribute and each attribute’s value to indicate how much
a certain alternative is preferred. Moreover, in most cases, the
composition of several attributes (such as Bob’s desired location
of the course together with the desired price) is an arbitrary nu-
merical function, in which the quantitative preference definitions
of the involved attributes need to be normalized. Therefore, we
argue that, in general, qualitative (i.e., non-weighted) preferences

are more suitable for a user and in this work we will concentrate
on qualitative preferences.

Prioritized Preferences. If a user’s preference includes more
than one attribute, the user may consider one attribute’s prefer-
ence more important than another. For example, Bob’s preference
concerning an exam is more important to him than the one about
the certificate. Therefore, it is desirable to allow for prioritized
preferences.

Default and learned preferences. It is not always needed that
users define their preferences manually. Some preferences might
be automatically learned from the user’s behavior. As an example,
if the learner’s schedule is already tight on Friday, other days of
the week may be more suitable. Or if a student’s results in oral
exams have not been as good as the results for written courses,
courses with written exams may be automatically preferred by
the system. Moreover, one could consider default preferences that
apply to learners that fit into a certain group profile [9] or even
general default preferences, such as preference for the cheapest
price, courses with certification, the lowest distance, the highest
reputation, etc.

Hard and soft constraints. As we already pointed out,
preferences model constraints that a user may allow to be relaxed,
if needed. Although we focus our work on these kinds of soft
constraints, we want to point out that hard constraints may be
still part of a user profile. For example, Bob’s constraint that a
course should not be more expensive than 100 euros is a hard
constraint. Hard constraints are part of most existing user models;
they are complementary to the theory we present and supported
in our implementation.

B. Formal Model of Preferences

In order to model the kinds of hard and soft constraints that
Bob is able to specify his preferences with, we will now introduce
the notion of Preferences and Preference-based Queries. As we
have seen in the scenario, we aim for advanced search for suitable
courses. A query model in which users can only specify hard
constraints on course characteristics does not support this kind
of search. The notion of preference-based querying in the context
of databases has been formalized independently by KieBling [10]
and Chomicki [11]. To describe user preferences in a way that is
exploitable for querying, we rely on the preference-based query
formalization as proposed by Chomicki in [11]. In this extension
to relational algebra, preferences are expressed as binary relations
over a set of objects O.

Definition 1: [Object-Level Preference Relation] Let A be the
set of available attributes of the elements in O, and U; the
respective set of possible values of an attribute a;. Then any
binary relation = which is a subset of (U1 X ... x Up) x (U1 X

. X Un) is an object-level preference relation over the object
set O.

An object level preference provides the means to compare two
objects and to decide which one is preferred. But typically, a
user’s preferences are not directly defined on object level. There-
fore, although an object-level preference allows for comparison
of objects, it is not the right means to express a preference,
as statements about which object is preferred to another are
not explicitly given by the user. In our scenario, Bob does not
provide an object-level preference: he does not state relationships
between whole objects like “I prefer course A, which is held on
Monday and costs 72 Euro and provides a certificate and ..., to
a course B, which is held on Tuesday and costs 44 Euro and also
provides a certificate and so on.”. In contrast, Bob’s preferences
are defined on attribute level: on the attribute values of each
object attribute and not on the objects themselves. For example,
for the attribute “day of the week” Bob states that he prefers the
value Tuesday to the value Monday. Therefore, preferences are
rather stated with respect to the attribute values of each single
attribute. Consequently, certain values are preferred over others,
thus forming a partial order of attribute values:

Definition 2: [Attribute-Level Preference Relation] Let A be
the set of available attributes of the elements in O and S =
{a1,...,an} C A a non-empty set of attributes with V.= JU;
the union of the attributes domains of possible values. The
attribute level relation g, which is a subset of V x V, is
an attribute-level preference relation over the value set of the
attributes in S.

If |S| = 1 we call =g a single-attribute preference relation.
Otherwise, it is called a multi-attribute preference relation.

Example 1: Bob’s preference concerning the desired location
of the course is a multi-attribute preference: it spans over the
attributes direction and distance. Multi-attribute preferences pro-
vide means to model conditional preferences. Bob’s preference
for a longer bike ride depends on the direction of the ride. This
conditional preference can be modelled by specifying a relation
spanning over these two attributes.

For a more convenient notation, we introduce an additional
relation to denote indifference (or incomparability) between two
objects.

Definition 3: [Indifference Relation] Given an attribute level
preference relation g and two objects x and vy, the indifference
relation ~g is defined as © ~g y=x sy Ny g x.

If x either dominates y (i.e., x =g y holds) or both are indifferent
(i.e., x ~g y holds), we write t g y=x =g yVr~gy.

Based on these attribute-level preference relations that are
provided by the user, one is not yet able to compare objects:
what if an object is better in terms of one attribute, but worse in
terms of another attribute? If Bob states that Tuesday is preferred
to Monday and that cheaper courses are preferred, how can one
compare a more expensive course on Tuesday with a cheaper
course on Monday? In other words, we need a way to combine
all the attribute-level preferences in order to build up an object-
level preference relation that allows us to compare objects.

This combination is provided by a so-called composition of
attribute-level preferences:

Unidimensional Composition applies if preference relations
over the same attribute have to be combined. This does not apply
to our scenario and we refer the reader to [11] for more details.

Multidimensional Composition applies if attribute preference
relations have to be composed that are stated over different
attributes or attribute sets.

Multidimensional composition is needed when the relations
are imposed over different sets of attributes, in order to expose a
new preference relation over the Cartesian product of the sets of
attributes. For a composed preference, the combined preference
relations are called dimensions of the composed preference rela-
tion. According to [11], two multidimensional compositions are
common:

o lexicographic composition combines two dimensions by
considering one as more important than the other.

o Pareto composition allows for combining two preference
relations without imposing a hierarchy on the dimensions—
all dimensions are considered to be equal.

Lexicographic Composition. A lexicographic composition of
two preference relations is based on the assumption that one
relation can be considered more important than the other: there
is a total ordering between the two attributes. Thus, objects are
generally ordered according to the more important attribute and
only in case of ties the less important attribute is considered to
decide the order.

Definition 4: [Lexicographic Composition] The lexicographic
composition >, of the preference relations >1,...,=n is defined
as:

zr-rye Ik (yrpzAVi<k:xz~y;y).

The comparison of objects according to a lexicographic com-
position is similar to the definition of the word order in a lexicon:
words starting with letters ranked higher in the alphabet are put
before ones starting with lower ranked letters. Only in case both
first letters are equal, the second letter is considered for deciding
which word is listed first, and so on. Applied to our scenario,
we may order Bob’s preference concerning the exam and his
preference concerning the certificate in a lexicographic manner:
any course without an exam is preferred to a course requiring
an exam independent of the certificate dimension. Only in case
two courses show equal values in terms of the exam (either
both require one or none), they are compared according to the
certificate dimension.

In most of the cases, a user considers the dimensions of her
preferences equally important. For example, in our scenario, most
of Bob’s preference dimensions play equally important roles for
the comparison of courses. Therefore, the fair principle of Pareto
domination has been introduced in order to combine several
preference dimensions.

Pareto Composition. Pareto composition yields a new prefer-
ence relation following the fair principle of Pareto domination.
An object z is said to Pareto-dominate an object y iff x is better
than y in terms of at least one of the preference relations and
equal or better in terms of all other preference relations. Or, more
formally:

Definition 5: [Pareto Composition] Given the preference rela-
tions =1, ..., =n over the sets of attributes Aj,...,An, the Pareto
composition =p of =1...>n is defined as: v =p y < (Vi:x =;
N RE BT
We say an object x Pareto dominates another object vy, iff x >p y.

This definition follows the principle of weak Pareto dominance
(as used, for example, in [11] and [12]), which implies that
incomparability in one preference dimension does not yield
incomparability on the object level, because >; contains all the
incomparable attribute values for preference dimension 4. In con-
trast to the principle of weak Pareto dominance, some approaches
follow the strong Pareto dominance (such as, for example [10]
and [13]), where an incomparability on the attribute level always
implies incomparability on the object level: as soon as two
objects are incomparable in terms of a single attribute, they are
both incomparable. The choice between weak and strong Pareto
dominance for the composition of preference relations makes
a difference only for partial order attribute level preferences.
For the composition of total order preference relations, there
is no difference, as for a total order preference relation >; the
corresponding indifference relation ~; is empty.

Applied to our scenario, the principle of Pareto composition
lets a low-cost course x dominate an expensive course y only
iff in terms of all other preference relations (as imposed on the
attributes location, duration, etc.) x is at least equally good as y.
This principle has been exploited in the area of database systems
for the so-called skylining [14], [15], [16]. In skyline queries,
each single attribute is viewed as an independent, non-weighted
query dimension. Best matches for skyline queries are determined
according to the principle of Pareto optimality: each object that
is not dominated by any other object is considered as optimal
and as a best match. All these non-dominated objects are called
the skyline of the query.

Now we have to apply the notion of preference, as developed
so far, in order to select from the set of all available objects the
ones that are optimal according to a given preference. This is
catered by the so-called winnow operator, which selects all non-
dominated (preferred) objects from a set of solutions given an
object level preference relation.

Definition 6: [Winnow Operator w] Given a set of objects O
and a preference relation -, the winnow operator w is defined
as w(0), in the following way:

wO)={zec0|-32' €0: ' > z}.

C. Querying with Preferences

As pointed out earlier in this paper, exact match semantics
of traditional databases do not sufficiently fit the queries as
formulated by end users. On the one hand, this is because too
specific query predicates often lead to empty result sets. For
example, if Bob had specified only his most preferred attributes
as hard constraints (i.e., connected by a logical and), the system
would most likely come up with an empty result set, because no
learning object fulfills all of Bob’s most desired features. We refer
to this query as a conjunctive query. On the other hand, too many
unspecific hard constraints may yield huge numbers of results. In
Bob’s case that would mean that all the properties that he may
think of are put into the query and connected with a logical or;
in this case, many learning objects (including the most preferred
and least preferred) will be provided to Bob. We will refer to this
kind of queries as disjunctive queries. Both approaches lead to
the fact that, in practice, users have to modify query constraints
in a trial-and-error fashion until they get a result set of the right
size.

In contrast to the exact match paradigm, the notion of best
match semantics fits much better to typical user’s search requests.
In this case, the goal is to compute a set of results that fulfill
the query’s constraints as good as possible. These constraints are
often referred to as soft constraints. Best match queries automati-
cally adapt the specificity of a search to the available objects. Our
proposed solution to achieve best matches is to exploit preference
orders for querying. Preference-enabled queries are based on the
observation that expressions of the form “I like A more than B”
are easily stated by users when asked for their wishes. Therefore,
it should be optimal if a query engine can derive best matches
directly from such preference expressions instead of aiming only
at exact matches. Besides preference-based queries, several other
approaches to retrieve best matches have been proposed, such as
query relaxation and top-k retrieval.

a) Query relaxation: This family of algorithms does not
introduce new query language constructs (except sometimes an
operator to distinguish between hard and soft constraints), but
continues to loosen and/or remove query constraints until at least
some results can be returned to the user [17], [18]. The advantage
of this approach is that the queries themselves stay simple;
only the evaluation algorithm is changed. Various relaxation
algorithms have been proposed, including [19], [20], [21]. At
the same time, the main advantage of query relaxation is also
its main weakness: the user has no control over the relaxation
process. In the worst case, the relaxation algorithm will remove
the important constraints early, while keeping the less relevant.
For example, Bob might end up with a certified course that starts
3 months later, because the algorithm relaxed on the starting date
instead of on the less important certification constraint.

b) Top-k queries: Inspired by information retrieval algo-
rithms for document search, query techniques that rank results by
their relevance for the user have been introduced for databases as
well. Instead of expressing constraints on the answers, the query
includes a scoring function that assigns a relevance score to each
potential answer [22]. The scoring function of a query is usually
the weighted sum of individual scores for each relevant attribute.
A formal extension of relational algebra by a specific top-k
operator has been proposed in [23]. Algorithms and systems for
efficient computation of top-k queries have been developed [24],
[25], [26]. The main disadvantage of the top-k paradigm is

that in many cases it is very difficult for the user to specify
the right scoring function, as this requires the user to put her
wishes in a numeric relation to enable something that might be
considered comparing apples with oranges. For example, it is
virtually impossible for Bob to tell how many additional miles
he would be willing to ride for a course starting one week earlier.
But these are exactly the trade-offs that have to be specified as
weights within the scoring function.

c) Preference-enabled queries: In contrast to these two
approaches, preference-enabled queries do not require ranking.
All objects contained in the result set are optimal according to
the given preference orders. Assuming a ranking score function
based on user preferences, any object that would be ranked lower
(for example, according to some of the measurements in the
approaches of top-k or query relaxation) would not be optimal
anymore: it represents a worse alternative than the objects with
a higher ranking. For this reason, any result set of a preference-
enabled query is unordered: all results are equally relevant. To
provide more effective search capabilities for preferences, query
languages like SQL over relational databases [27] and SPARQL
over RDF graphs [28] have been extended to facilitate preference-
based retrieval algorithms.

In the next section, we show how preference expressions
together with preference-enabled queries are applied to effectively
search for learning resources.

IV. PREFERENCES ON LEARNING RESOURCES

There are many ways in which on-line learning can be per-
sonalized to the learner. Preference-based reasoning provides
adaptive educational engines with powerful means for selecting
suitable learning resources, other learners (e.g., for collaboration)
or even a suitable adaptive instructional strategy. In this section
we will show how preference handling can be used to match
the complexity and variety of a learner’s needs and the plethora
of possibilities—be it learning material or learning strategies—
offered by current adaptive learning systems.

Traditional adaptation techniques include adaptive presenta-
tion and adaptive navigation. Adaptive presentation techniques
include hiding, adding, annotating or highlighting text or multi-
media material, based on their inferred relevance to the learner.
Adaptive navigation techniques include the creation of guided
tours, user-adaptive contextual menus (by means of reordering,
hiding or adding items, annotation, highlighting), personalized
search results, feedback during the planning process, and pro-
active recommendations [3]. Interface techniques to achieve these
adaptations are manifold and can be used both in the process of
searching for a learning resource and while interacting with the
resource.

Adaptive learning is a prominent pedagogical approach where
each individual learner is provided with a set of learning activ-
ities and resources that fits the individuals’ learner preferences
including portfolio, background knowledge, educational needs
(such as learning styles) and situational circumstances of the
learner. Level B of the IMS Learning Design Specification [29]
provides means for creating alternative routes that address these
individual differences. Similarly, popular adaptive hypermedia
systems, such as AHA! and MOT provide rules that allow for
addressing individual learning styles [30]. In contrast to MOT, in
which authors explicitly select an adaptive instructional strategy,

the AHA! system’s adaptations are based on outcomes of the
adaptive hypermedia’s engine reasoning system.

Learning styles, or rather cognitive styles have been a driving
factor in the design of adaptive educational hypermedia. In partic-
ular the distinction between field dependent and field-independent
learners have received a great deal of attention. Whereas field-
dependent learners take a more passive approach and approach
the material more holistically, field-independent learners tend to
be more serialistic in their approach to learning, reusing strategies
and tools that they have used before. Concretely, this means that
field-independent learners prefer free navigation tools—such as
site search, rich interlinking and references to background articles
and social filtering—, but that field-dependent learners need more
structured material, as not to get ‘lost’ [31]. Other frequently
addressed learning styles include example-oriented vs. activity-
oriented learners and verbalizers vs. visualizers [30].

It may be clear that these various kinds of learning styles, as
well as individual preferences including background knowledge
and situational circumstances can be addressed by a variety of
instructional strategies, which eventually result in one or more
adaptations. However, there is currently only partial knowledge
on which adaptations are useful for which learning style. One
could, for instance, say that for field-dependent users a fixed path
to follow is preferable to a highly interlinked learning resource.
However, should the author of a learning resource have coupled
the fixed-path condition with more examples and less hands-on
material, this might not be the best choice for the field-dependent
learner who is more activity-oriented.

Classical systems, such as AHA!, generate personalized paths
that are based on the learner model as well as explicitly indicated
preferences. However, if the system has to deal with conflicting
preferences, treating these preferences as hard constraints might
lead to situations in which no optimal path can be found.
A preference-based model would allow for selecting the most
appropriate candidate paths among the available ones, which
caters as many of the preferences as can possibly be catered.

Preferences provide a framework to model all the specific
properties, wishes, interests, and needs of a learner. They allow
for a trade-off between several dimensions of a learning style’s
characteristics which would solve the problem of the fixed-path
condition. However, the motivation of a learner highly depends on
the fact that she is provided with material suiting her needs. As we
have shown, representing these needs via preferences rather than
via fixed single-value hard constraints, allows any educational
system to provide material which may not be the overall best
choice for all users but which is at least the best selection (among
the available material) for the learner.

In the following section we will bring together the more
informal needs and wishes of Bob presented in the scenario
in Section II and the formal model of preferences provided in
Section III.

A. Motivation Scenario revisited

In this section, we formally specify Bob’s hard and soft
constraints from our scenario in Section II. For each attribute
that Bob provides a preference upon, an attribute level preference
relation is imposed. Some preference relations can be expressed
over a single attribute (such as Bob’s preferences concerning the
weekday of the course) and are therefore modeled as single-
attribute preferences. Bob’s preference relation about the venue

of the course depends on two attributes: the direction (north or
south) and the distance from his home. Therefore, this conditional
preference is modeled as a multi-attribute preference. Accord-
ingly, we can formally define Bob’s preferences. For example, the
preference relation over the attribute weekday can be represented
as:

=weekday= 1(Tuesday, Monday),
(Wednesday, Monday), (Thursday, Monday), ...}

And his multi-attribute preference over the venue can be
defined as follows:

~venue= {
(direction = south A dist. = 10km, direction = south
Adist. < 10km), ..., (direction = north A dist. =
10km, direction = north A dist. < 10km)}

In a similar way we can define the other attribute level

Pfefefences >type,of,learm’ng’ > homework> >price’ >certificate’
=exam, > durations and >start-

See Figure 1 in the beginning of the paper, in which the Hasse
diagrams for the partial orders representing Bob’s preference
relations are shown. In order to select Bob’s preferred courses
out of all the available ones, we need an object level preference
that is a composition of all these attribute level preferences.

From Section III we recall that there are two ways of combin-
ing attribute level preferences to a single object level preference:
lexicographic composition and Pareto composition. The former
applies to preference relations that are prioritized and the latter
to preferences that are considered equally important.

Bob considers his preference for a course with no exam more
important than the preference concerning a certificate. In any
case, he prefers a course with no exam. Only if two courses bear
the same attribute value in terms of exam, he would prefer the
one with a certificate to a course without. Therefore, we first build
up a lexicographic composition of >ezam and >cert; ficater W
denote this composed preference relation as >r,_ ...,

As Bob considers his preferences on the remaining attributes
as equally important, we build an object level preference by
Pareto composing the already composed preference >, ...,
with >'type,of,learningv > homework> >'t:yclev >prices ™ durations
=weekday> a0d = start. These single preferences build a Pareto-
composed preference relation > g,;. Given two courses C; and
Ca, C1 = pop C2 holds if all attributes of C; are equal or better
than Cy according to the attribute’s preference relations and if at
least one attribute C; is better than (and not equal to) Co (see
definition 5 of the Pareto Composition).

Considering the relation > g, the optimal course would be
the one that fulfills all the top values of Bob’s preferences, since
all others would be dominated by this relation. And obviously, he
would be really happy with a regular 3 month course happening
once a week on Tuesday, Wednesday, or Thursday without an
exam but with a certificate and all the other desired features.
Unfortunately, in most of the cases, this course does not exist.
However, the semantics of the two composition paradigms cater
the desired soft constraint behavior: they provide the courses with
an optimal trade-off between the desired and the actual features.
This selection is provided by the winnow operator wpg,;, defined
for > pop and applied to the set O containing all courses that are
possibly available to Bob.

Course | Weekday | Price | Distance | Direction
A Tuesday 44 Euro 2 km south
B Monday 44 Euro 2 km south
C Wednesday | 72 Euro 2 km south
D Wednesday | no cost 10 km north
E Wednesday | 32 Euro 10 km north

Fig. 2. Some available courses for Bob. B and E are suboptimal: B for
weekday, and E for cost. A, C, and D are non-dominated.

We will now show on the basis of the dataset depicted in
Figure 2 that the Pareto composition > p,; provides exactly the
intended best match result: the courses in the skyline, or, more
precisely, the courses that are not dominated by any other course.
For the sake of simplicity, we omit some of the dimensions from
the scenario. As delivered by the winnow operator w g, a course
C' is considered a best match according to Bob preferences, if
there is no other course C’ such that C’ >p,, C: there is no
other course that dominates C. Given this, we can conclude that
course B in Figure 2 is not preferred and therefore irrelevant,
since it is dominated by A: A is equal to B according to the
dimensions price, distance, and direction. However, A is better
than B according to =,cckday (BOb prefers a course on Tuesday
to a course on Monday), which lets A dominate B. Therefore,
Bob will not be interested in B, as A is a better alternative. Let us
have a look at A and C: A is better than C concerning > cekday-
but in contrast C >yenue A holds. Given the Pareto composition
of = yeekday and =venue, A and C are not comparable, as none of
them dominates one another. Hence, Bob is probably interested in
receiving both as answers, since they are orthogonal alternatives.
For attending course D, Bob has to ride to the north of the city,
which he really dislikes. On the other hand, D is for free, so in
exchange for accepting to ride to the north he will save money.
> Bop ensures that this alternative will be included into the result
set as well, since it is not dominated (even though it is Bob’s last
option in terms of >yenue).

From the courses depicted in Figure 2, the preference-based
search with Bob’s constraints, as described in the scenario,
presents the courses A, C, and D. The search prunes the courses
B and E. B is dominated by A, because on Monday Bob prefers
not to reschedule his jogging appointment with his friend, and
A is equally good as B in all other dimensions. E is dominated
by D, because it is more expensive and not better in any other
dimension.

In this section, we elaborated how preferences and their
composition are applied to rule out sub-optimal, non-preferred
objects. For a learner, this information filtering is of particular
importance, as it guides a way through the growing space of
possibilities of where and what to learn. In the next section we
will show our implementation, in which we applied the preference
principle to support students with the selection of courses at a
university.

V. IMPLEMENTATION

To show that preference-based search is a promising approach
for managing huge data sets of learning resources, we imple-
mented a Web Service for preference-based queries over the
whole database for lectures held at the University of Hannover,
Germany. The data set comprises about 10,000 lectures each
with about 10 attributes. This yields an RDF graph of over

100,000 triples. In order to realize the preference-enhanced
search facilities, we implemented a Web Service called Personal
Preference Search Service (PPSS), which is integrated into the
Personal Reader Framework [32]. We further provide a prototyp-
ical user interface! to this service that allows students to specify
their preferences in order to find a manageable set of learning
resources. In this section, we will first provide some insights in a
preference-enabled query language for RDF data. Then we will
give a short description of the Personal Reader framework and
describe the architecture of our service and its integration into
the framework. Finally, we provide an experiment that shows the
percentage of objects ruled out for given queries.

A. A Preference-enabled Query Language

Querying with preferences in the context of the Semantic Web
is a relatively new field. In [28], we made a first contribution by
establishing an extension for the RDF query language SPARQL
empowered with an implementation based on the ARQ SPARQL
Processor [33], which is part of the Jena Semantic Web Frame-
work [34].

To specify soft constraints in the form of preferences, the
SPARQL language has been extended by the PREFERRING-
construct. Figure 3 shows the query for our scenario (for the sake
of readability, we left out some of the preference dimensions).
Beyond the initial hard constraint construct FILTER (see line 11
in Figure 3) it is now possible to define soft constraints in
a SPARQL query. The extension of SPARQL comprises two
atomic preference expressions and two facilities for combining
preference dimensions. For atomic preferences, the following
expression types are offered:

e Boolean preferences (line 14, 22, 24 and 28 in Figure 3) are
specified by a Boolean condition. Results that satisfy this
condition are preferred over results that do not satisfy it.

e Scoring preferences are specified by the term HIGHEST
(resp. LOWEST), followed by a numeric expression. Re-
sults for which this expression leads to a higher value are
preferred over results with a lower value (and vice versa).
Two types of scoring preferences are provided: either they
are defined over a SPARQL domain with a total ordering
(line 26 and 30) or they are defined over a partial order
(given by the user in form of a set of pairs) (line 16 to 20).
As the definition of a partial order over many values may be
cumbersome, a placeholder, denoted by an asterisk, can be
used to represent any other possible value. As an example,
see line 16, in which instead of defining all the equally
preferred optimal days of the week, an asterisk is introduced.
This feature is particularly helpful if an attribute has a lot of
possible values: omitting some values in the definition of a
partial order yields an indifference for these omitted values
with respect to any other value of that attribute.

These atomic preference expressions can be composed of two
types of multidimensional composition (c.f. Section III):

o A Pareto composed preference consists of two preference
expressions connected by an AND. Both expressions are
evaluated independently. An object is preferred if it is better
in one of both preferences, and at least equally good in the
second one.

lavailable at http:/semweb.kbs.uni-hannover.de:8081/PreferenceQueryGUI

1 SELECT ?lecture

2 WHERE {

3 ?x j.0:name ?lecture.

4 ?x j.0:learning_type ?type.

5 ?x j.0:weekday ?weekday.

6 ?x j.0:exam ?exam.

7 ?x j.0:certificate 7?certificate.

8 ?x j.0:begin ?begin.

9 ?x j.0:homework ?homework.

10 ?x j.0:price °?price.

11 FILTER (?price <= 100).

12 }

13 PREFERRING

14 ?type =’'face_to_face’

15 AND

16 HIGHEST ?weekday ((x,’"Monday’),

17 ("Monday’,’Sunday’),
18 ("Monday’,’Saturday’),
19 (" Sunday’,’Friday’),
20 (" Saturday’,’Friday’))
21 AND
22 ?exam = ’'no’
23 CASCADE
24 ?certificate =’yes’
25 AND
26 LOWEST ?begin
27 AND
28 ?homework = ’yes’
29 AND

30 LOWEST ?price

Fig. 3. Preference-extended SPARQL Query for Bob’s desired course.

e In a cascading (lexicographic) preference, two preference
expressions are connected by a CASCADE (line 22 to 24):
the first preference is evaluated first. Only for objects that
are equally good with respect to the first preference, the
second preference is considered.

B. The Personal Reader Framework

The Personal Preference Search Service has been realized as
a service part of the Personal Reader Framework [32]. The
Personal Reader Framework allows for the development of Web
content readers that provide adaptation or personalization func-
tionalities. The basic idea of the framework is that personalization
functionality is encapsulated into Semantic Web Services, so-
called Personalization Services, which deliver personalized con-
tent based on user profile information. Personalization Services
usually focus on a certain domain and task. As an example, the
MyEar music recommender service [35] delivers personalized
podcasting feeds and MyNews deals with personalization of
news feeds. User profile information, which is evaluated in
order to adapt the content to the user, is shared between the
different services via a centralized user modeling service (see
Figure 4). In this way, users benefit from sharing their user
profile among different personalized services, as the cold start
problem is reduced and the need for defining their preference
at different places is remedied: whenever users switch between
different Personal Reader applications, the applications—or, more
precisely, the Personalization Services—can utilize user profile
information that is gained in other applications. For example,
information about the musical taste of a user gathered by MyEar
can be exploited by MyNews to filter news articles about music
topics. A Personal Reader application is realized by syndicating
content that is provided by (possibly multiple) Personalization

User

AJAX GUI

Syndication
Service

Syndication

MyEar Music

PPSS Syndi-
cation Service

Connector —_

Service

PPSS

Recommender

Personal Publication
Reader

Syndication
Service

Access
Control

User Modeling

Personalization
Service

Service

Service
Publication
Personalization Service

News Personalization
Service

Fig. 4. The Architecture of the Personal Reader Framework comprising the Personal Preference Search Service (PPSS).

Services. The syndication of content and the implementation of
further application logic is done in so-called Syndication Services,
which may be equipped with different user interfaces, as depicted
in Figure 4. Orchestration of different services is supported by
a Connector Service, which allows for dynamic discovery and
integration of adequate Personalization Services. Using RDF
as data model and format for all communication between the
different services, eases interaction between such services, which
may not know each other in advance. For users, the service-
oriented architecture of Personal Reader applications together
with the shared user profile has the advantage that applications—
although being possibly composed at runtime—still are able to
provide adaptation and personalization functionality.

Given this setting, on the one hand the our Personal Preference
Search Service (PPSS) is able to benefit from the shared user
model, while on the other hand other services of the Personal
Reader Framework will benefit from the functionality of the
PPSS for their purposes. For example, the Personalization Service
for Curriculum Planning [36] and the MyEar Music Recom-
mender [35] can utilize the PPSS to offer an improved search
for adequate courses and music files, respectively. The Personal
Publication Reader [37], which allows users to browse publi-
cations within an embedded context, would be able to provide
suggestions on publications that suit the user’s preferences by
integrating the PPSS.

C. The Personal Preference Search Service

As shown in Figure 4, the Personal Preference Search Service
(PPSS) acts as a personalization service in the Personal Reader
Architecture. It comprises an AJAX-based GUI (see Figure 5)
and the PPSS Syndication Service. It also wraps the extended
ARQ engine. If a query is submitted, the following steps are
performed:

1) An RDF description of the preferences is created out of the
user’s input.

This RDF description is passed to the PPSS connected via
the connector service. The PPSS creates a SPARQL query
out of the RDF description.

The extended ARQ engine processes the query.

The PPSS generates an RDF description of the result set
and passes it to the user interface.

The results are formatted and presented to the user.

2)

3)
4)

5)

These functionalities of the PPSS are separated. This fact,
together with the architecture of the Personal Reader and the
flexibility of the user interface, enables the system to query any
RDF-based dataset of learning resources with arbitrary attributes
of the objects in the dataset.

The prototypical user interface (shown in Figure 5) allows the
user to specify her preferences for each attribute. By clicking on
the more-button, additional alternative values can be provided.
For each attribute, the asterisk placeholder can be introduced
by selecting, for example, the entry “any other time”. This user
interface offers the definition of total-order, Pareto composed,
single-attribute preferences (cf. Section III). Due to the com-

Preference Search

Course Topic

Course Topic Keyword
Type in the keywaords the course's title should contain in your preferred order.

Searching Learning Resources using Preferences

The following forms allow you to formulate a Preference-based Query. Thus please order your entries according to your preferences.

Please specify the terms that should appear in the title of the course description.

VS

preferred: |Mathematik

| more

Time Constraints

Weekday
Select your preferred days of the week in your preferred order.
preferred: | Thursday = [remove
to: [Tuesday | [remove
to: [Wednesday =] [remove
to: [Monday [[remove

to: [(Any other weskday) | [remove | [mare

In this section you can specify vour time constraints. Please order them according to how they suit your schedule.

Select the duration (in minutes) of the course in your preferred order.

=l ‘remnve
| ‘remnva
i} ‘remuva
to: [ny other duration)]| [[emove | [[mere |

preferred: |80

to: |60

to: [120

Time

Select the preferred starting times in wour preferred order.
preferred: [08:00 =1 [remove |
o [
to: lﬁ W
to: m W
w [Em o (e

to: [(any othertme) ~| [[remove | [more

Faculty, Course Type and Lecturer

Fig. 5.

plexity of an user interface that allows for definition of partial
orders, prioritized and dependent dimensions, we currently do
not allow for these kinds of preference structure, although our
implementation is able to handle them.

A definition of a preference order with only one element (such
as the course topic keyword in Figure 5) is considered a hard
constraint and is added to the SPARQL query as part of the
FILTER-construct. This allows the user not only to specify soft
constraints in form of a preference order but also to specify
hard constraints, for example that the course should have a topic
containing “Mathematics”.

D. Experiment

We have performed a number of experiments with the lecture
database of the learning management system of the University of
Hannover. This system currently comprises 9829 lectures. In the
following example, we provide a preference-enabled query and
show how preference-enabled queries optimize the result set and
provides the desired learning resources, without pruning relevant
results or returning non-relevant objects:

Return courses about mathematics. I am interested
in readings rather than in tutorials or seminars. If
possible, I would like to attend a 90 minutes lecture. 60
minutes are also fine, but 120 minutes lectures are too
long. I like to have the lecture in the morning rather

The prototypical user interface of the Personal Preference Search Service allowing for the specification of preference orders.

than in the afternoon. Due to the lunch break, noon
is not possible for me. I don’t want to have a lecture
on Friday. Thursday would be my first choice, followed
by Tuesday. Wednesday would also be acceptable, and
would actually be better than Monday, as often I am
still at my parents until Monday afternoon.

Figure 5 shows how this query is specified in the user interface.
The SPARQL query created to search for the desired course
is shown in Figure 6. For each attribute, a preference relation
is imposed (line 22, 26, 32, and 41) and all the relations are
Pareto composed via the AND-keyword. Issuing this query to the
database of the University of Hannover yields the 4 results as
shown in the table in Figure 7. Obviously, none of the returned
courses matches all of the desired attributes. The first lecture is
held too late during the day, takes place on Tuesday, and it is
not a reading either; the second lecture is too long, and so on.
Mind that the order in the table does not correspond to a ranking:
all six results are equally relevant. However, concerning all the
64 courses about Mathematics that are contained in the database,
these 4 results are optimal: the remaining 58 courses are worse
in terms of at least one preference relation.

In Section III-C we already pointed out that it is difficult to
express soft constraints in a best match search approach that does
not allow for preferences. In this section, we show by means
of the given search request that the two alternative approaches,

Course | Start time | Type | Weekday | Duration | Faculty
Mathematics Exercises 10:00 Tutorial | Tuesday 120 Applied Math.
Mathematics (Economics) 09:00 Reading | Thursday 120 Algebra
Mathematics (Geography) 08:00 Reading | Thursday 90 Analysis
Mathematics (Engineers) 10:00 Reading | Tuesday 60 Applied Math.

Fig. 7. The 4 optimal courses at University of Hannover retrieved via a preference-enabled query to the course repository.
Course Start time Type Weekday | Duration Faculty
Math. in Physics 14:00 Seminar | Wednesday 120 Theor. Physics
Math. in Assurances 08:00 Reading Monday 90 Mathematics
Mathematics (Engineers) 10:00 Reading | Thursday 120 Algebra
Math. for Beginners 08:00 Tutorial | Wednesday 120 Algebra
Fig. 8. The 25 courses at the University of Hannover that match the disjunctive query. The 4 optimal courses included.

conjunctive and disjunctive queries, do not provide a satisfactory
search result.

Conjunctive. For this approximation to preferences, the user
would need to conjunctively connect all preferred attributes and
to execute several queries by going step by step down in the
preference order, by applying a trial and error strategy. This way
of querying is cumbersome and, moreover, returns too few and—
in most of the cases—no results. After some queries with no
results the user gets frustrated. Even if some results are returned,
the user needs to create queries with all different alternatives in
order to be able to select the best match. In our current example,
the conjunctive query yields an empty result, as none of the
courses in Figure 7 has all the most preferred properties.

Disjunctive. The second approach is to disjunctively put all the
possible desired outcomes into a single query. This query usually
returns a large result set that does contain the desired optimal
courses, but also a lot of non-optimal results that are dominated
by better ones. In our example, this query yields 25 courses
(see an excerpt of the results in Figure 8), including courses
with suboptimal attribute combinations. For instance, the lecture
“Mathematics (Engineers)”, offered by the Faculty for Algebra,
is suitable but obviously worse than “Mathematics (Geography)”,
offered by the Faculty for Analysis (third item in Figure 7).
The latter dominates the former, as it is a 90 minutes lecture,
which is preferred to a 120 minutes one. For this reason, it is
not worthwhile to include the longer lecture into the result set.
By following this procedure, filtering out non-optimal results, the
PPSS reduces the number of results from 25 to 4.

Both the conjunctive and the disjunctive approaches are not sat-
isfactory. The former comes up with no results and the latter puts
the burden on the user with many non relevant courses. Therefore,
our preference approach solves this problem by returning to the
user not too many results (leaving optimal ones out) and not too
few (including sub-optimal ones), but returning exactly the ones
that are optimal according to the user’s preferences given in the

query.

VI. RELATED WORK

To the best of our knowledge, using preference handling
to support the learning process has not been considered thus

far. Personalization that is based on single-value preferences
(preferences not providing an order but a single value) have been
subject of manifold research. For some examples we refer the
reader to [3], [5], [38]. The work described in this paper focuses
explicitly on how learner preferences look like and exploits the
structure of the user-given alternatives.

Some research has been carried out in area of quantitative
preferences. In [39] a framework for expressing and combining
quantitative preferences is described. Two other quantitative ap-
proaches are already mentioned in Section III-C, such as query
relaxation and top-k. The main drawback of any quantitative
solution is that the user is forced to either define a utility function
(or a relaxation function) or to use a predefined one. Both
alternatives do not sufficiently fit a learning scenario in which
users are not willing to specify detailed numeric functions. Fur-
thermore, aslearners have different preferences, learning styles,
and constraints, predefine solutions do not fit as well.

Preference-based search in the domain of digital libraries is
provided in [40]. In this work, preferences are defined for one
single dimension: over keywords of the desired object. Due to
this fact, the preferences are used for sorting the results and
cannot be exploited to filter irrelevant objects. In [41], different
approaches for catalog search are compared. It was found that the
preference-based alternative is the most promising. However, the
opportunities for defining preferences in the search form of the
compared preference approach, as presented in [41], are limited
to the identification and prioritization of dimensions, but do not
allow for preferences between the values of the dimensions. This
is crucial for complex domains, such as learning resources where
most of the dimensions are discrete.

VII. CONCLUSIONS AND FURTHER WORK

Learner models as well as search capabilities in existing edu-
cational systems typically allow for hard constraints that learning
material should fulfill. However, in many cases, users do not just
think in terms of hard constraints, but rather have soft constraints
in their mind, such as “Monday is better but Tuesday would be
fine as well”. Preferences allow users to specify these wishes in a
way that can be processed by engines in order to return only the
best matches based on such wishes: those results that dominate

1 PREFIX xsd:<http://www.w3.0rg/2001/XMLSchema#>
2 PREFIX rdf:<http://www.w3.../22-rdf-syntax-ns#>
3 PREFIX j.0:<http://www.l3s.de/studip#>

4 PREFIX fn:<java:...jena.query.function.library.>
5

6 SELECT ?name

7 ?starttime

8 ?typel

9 ?weekday

10 ?duration

11 ?faculty

12 WHERE ({

13 ?x Jj.0:name ?name.

14 ?x J.0:typel ?typel.

15 ?x j.0:weekday ?weekday.

16 ?x j.0:start_time ?starttime.

17 ?x j.0:duration ?duration.

18 ?x j.0:faculty ?faculty.

19 FILTER (fn:contains (?name, "Mathematics")) .
20 }

21 PREFERRING
22 HIGHEST ?typel

23 (("Vorlesung’,’Uebung’)
24 (" Uebung’,’Seminar’))
25 AND

26 HIGHEST ?weekday

27 ((" Thursday’,’ Tuesday’)
28

’Tuesday’,’Wednesday’)

(
29 (" Wednesday’, "Monday’),
30 ("Monday’, *))
31 AND
32 HIGHEST ©?starttime
33 ((709:007,710:00")
34 ("10:00",708:00")
35 (08:00","14:00")
36 ("14:00",715:00")
37 ("15:00","16:00")
39 (716:007, %))
40 AND
41 HIGHEST ?duration
42 (("907,760")
43 (7607,7120")
44 (11207, %))
Fig. 6. Preference-extended SPARQL query for preferred courses at the

University of Hannover.

the rest of potentially relevant ones. These preference-enabled
queries are easy to process and provide intuitive semantics of
what is meant with a preference order.

In this paper, we described how such preferences and
preference-based queries can be used for selecting for suitable
learning resources. We showed that our approach is more ex-
pressive than existing approaches, which are either restricted to a
single value preference or require a quantitative representation of
preferences. By considering the learner’s preferences, the learning
objects that are selected by the system are optimal for the learning
process. Moreover, suboptimal learning objects are not shown
to the user, which saves the user from the burden of selecting
from a huge set of possibilities. Our approach allows for both
hard and soft constraints. We presented a very broad notion of
soft constraints that allows for preferences including prioritized
as well as non-prioritized composition, partial order preferences
and conditional preferences.

We presented the implementation of our approach as a Web
service in the Personal Reader Framework. We exploited the
preference extension of a widespread Semantic Web query lan-
guage in order to query a large dataset of learning objects in
a user-friendly way. Further, we demonstrated the value of our

approach via an experiment at the University of Hannover’s
learning management system.

Our future work focuses on the improvement of our current
prototype with optimized algorithms that are based on recent
results on skylining research. We currently investigate enhance-
ments to our user interface in order to allow more expressive
preferences, which are already supported by our implemented
engine. The storage and reuse of preferences is another topic
of future research: a preference repository [9] may store some
of the preferences that tend to be static (such as the preferred
language, location, etc.) and reuse them automatically for future
search requests. The central user modeling service of the Personal
Reader Framework may serve as such a repository. In addition,
preferences may also be used for improving existing automatic
course generation algorithms (such as [42], [36]) and recom-
mendations (first ideas in [43]). We are currently exploring these
directions of research.

ACKNOWLEDGEMENTS

The authors’ efforts were (partly) funded by the European
Commission in the TENCompetence project (IST-2004-02787)
(www.tencompetence.org).

REFERENCES

[1]1 A. Jameson, Adaptive interfaces and agents. =~ Mahwah, NJ, USA:
Lawrence Erlbaum Associates, Inc., 2003, pp. 305-330.

[2] G. Cheetam and G. Chivers, Professions, Competence and Informal
Learning. Edgard Elgar Publishing Limited, 2005.

[3] P. Brusilovsky, “Adaptive hypermedia,” User Modeling and User-
Adapted Interaction, Ten Year Anniversary Issue 11 (Alfred Kobsa, ed.),
pp 87-110., 2001.

[4] H. Hills, Individual Preferences in E-Learning. Brookfield, VT 05036,
USA: Gower Publishing Co., 2003.

[5] A. Kobsa, The Adaptive Web: Methods and Strategies of Web Person-
alization, Brusilovsky, P, Kobsa, A., Nejdl, W., eds., Lecture Notes in
Computer Science, Vol. 4321. Springer-Verlag, Berlin Heidelberg New
York, 2007, ch. Generic User Modelling Systems.

[6] P. Brusilovsky and C. Peylo, “Adaptive and intelligent web-based
educational systems,” International Journal of Artificial Intelligence
in Education, Special Issue on Adaptive and Intelligent Web-based
Educational Systems, vol. 13, pp. 159-172, 2003

[7]1 F. Abel, E. Herder, P. Kirger, D. Olmedilla, and W. Siberski, “Exploiting
preference queries for searching learning resources,” in EC-TEL, 2007,
pp. 143-157

[8] S. Skiena, Implementing Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica. — Addison-Wesley, 1990, ch. 5.4.2
Hasse Diagrams, pp. 163, 169-170, and 206-208.

[9] S. Holland and W. KieBling, “Situated preferences and preference
repositories for personalized database applications,” in ER, 2004, pp.
511-523.

[10] W. KieBling, “Foundations of preferences in database systems.” in
Proceedings of the 28th International Conference on Very Large Data
Bases, Hong Kong, China, 2002, pp. 311-322.

[11] J. Chomicki, “Preference formulas in relational queries.” ACM Trans.
Database Syst., vol. 28, no. 4, pp. 427-466, 2003.

[12] W.-T. Balke, U. Giintzer, and W. Siberski, “Restricting skyline sizes us-
ing weak pareto dominance,” Informatik—Forschung und Entwicklung,
vol. 21, no. 3-4, pp. 165-178, 2007

[13] C.-Y. Chan, P-K. Eng, and K.-L. Tan, “Stratified computation of
skylines with partially-ordered domains,” in SIGMOD ’05: Proceedings
of the 2005 ACM SIGMOD international conference on Management
of data. New York, NY, USA: ACM, 2005, pp. 203-214.

[14] S. Borzsonyi, D. Kossmann, and K. Stocker, “The skyline operator,” in
Proceedings of the 17th International Conference on Data Engineering
(ICDE), Heidelberg, Germany, 2001.

[15] K.-L. Tan, P-K. Eng, and B. C. Ooi, “Efficient progressive skyline
computation,” in Proceedings of the 27th International Conference on
Very Large Databases (VLDB), Rome, Italy, 2001.

[16]

(17]
[18]

[19]

(20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

[33]

[34]

(35]

(36]

[37]

(38]

D. Papadias, Y. Tao, G. Fu, and B. Seeger, “An optimal and progressive
algorithm for skyline queries.” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, San Diego, CA,
USA, 2003, pp. 467-478.

A. Motro, “Vague: a user interface to relational databases that permits
vague queries,” ACM Trans. Inf. Syst., vol. 6, no. 3, pp. 187-214, 1988.
T. Gaasterland, “Cooperative answering through controlled query relax-
ation,” IEEE Expert, vol. 12, no. 5, pp. 48-59, 1997.

N. Koudas, C. Li, A. K. H. Tung, and R. Vernica, “Relaxing join and
selection queries,” in Proceedings of the 32nd international conference
on Very large data bases (VLDB). VLDB Endowment, 2006, pp. 199—
210.

I. Muslea, “Machine learning for online query relaxation,” in Proceed-
ings of the tenth ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD). New York, NY, USA: ACM, 2004,
pp. 246-255.

S. Agrawal, S. Chaudhuri, G. Das, and A. Gionis, “Automated ranking
of database query results,” in Proceedings of the First Biennial Confer-
ence on Innovative Data Systems Research (CIDR), 2003.

M. P. Atkinson, M. E. Orlowska, P. Valduriez, S. B. Zdonik, and M. L.
Brodie, Eds., Proceedings of 25th International Conference on Very
Large Data Bases (VLDB). Morgan Kaufmann, 1999.

C. Li, M. A. Soliman, K. C.-C. Chang, and I. F. Ilyas, “RankSQL:
Supporting ranking queries in relational database management systems.”
in Proceedings of the 31st International Conference on Very Large Data
Bases, Trondheim, Norway, 2005, pp. 1342-1345.

R. Fagin, “Combining fuzzy information from multiple systems,” in Pro-
ceedings of the Fifteenth ACM SIGACT-SIGMOD-SIGART Symposium
on Principles of Database Systems (PODS), 1996, pp. 216-226.

U. Giintzer, W.-T. Balke, and W. KieBling, “Optimizing multi-feature
queries for image databases,” in Proceedings of 26th International
Conference on Very Large Data Bases (VLDB), 2000, pp. 419-428.
M. Theobald, H. Bast, D. Majumdar, R. Schenkel, and G. Weikum,
“TopX: efficient and versatile top-k query processing for semistructured
data,” VLDB J., vol. 17, no. 1, pp. 81-115, 2008.

W. KieBling and G. Kostler, “Preference sql - design, implementation,
experiences.” in Proceedings of 28th International Conference on Very
Large Data Bases (VLDB), 2002, pp. 990-1001.

W. Siberski, J. Z. Pan, and U. Thaden, “Querying the semantic web
with preferences.” in Proceedings of the 5th International Semantic Web
Conference (ISWC), Athens, GA, USA, 2006, pp. 612-624.

R. Koper and B. Daniel, “Developing advanced units of learning
using ims learning design level b,” International Journal on Advanced
Technology for Learning, 2005.

N. V. Stash, A. I. Cristea, and P. M. D. Bra, “Authoring of learning
styles in adaptive hypermedia: problems and solutions,” in WWW Alt.
’04: Proceedings of the 13th international World Wide Web conference
on Alternate track papers & posters. New York, NY, USA: ACM,
2004, pp. 114-123.

S. Y. Chen and R. D. Macredie, “Cognitive styles and hypermedia
navigation: development of a learning model,” Journal of the American
Society for Information Science and Technology, vol. 53, no. 1, pp.
3-15, 2002.

N. Henze and M. Kriesell, “Personalization functionality for the se-
mantic web: Architectural outline and first sample implementations,
semantic web challenge 2005,” in International Conference on Adaptive
Hypermedia and Adaptive Web-Based Systems (AH 2004), August 2004.
A. Seaborne, “An open source implementation of
sparql,” in WWW 2006 Developers track presentation,
http://www?2006.org/programme/item.php?id=d18, 2006.

B. McBride, “Jena: a semantic web toolkit,” Internet Computing, IEEE,
vol. 6, no. 6, pp. 55-59, Nov/Dec 2002.

N. Henze and D. Krause, ‘“Personalized access to web services in the
semantic web,” in SWUI 2006 - 3rd International Semantic Web User
Interaction Workshop, Athens, Georgia, USA, Nov 2006.

M. Baldoni, C. Baroglio, I. Brunkhorst, E. Marengo, and V. Patti, “A
personalization service for curriculum planning,” in ABIS 2006 - 14th
Workshop on Adaptivity and User Modeling in Interactive Systems,
October 2006.

F. Abel, R. Baumgartner, A. Brooks, C. Enzi, G. Gottlob, N. Henze,
M. Herzog, M. Kriesell, W. Nejdl, and K. Tomaschewski, “The personal
publication reader, semantic web challenge 2005, in 4th International
Semantic Web Conference, November 2005.

P. Dolog, N. Henze, W. Nejdl, and M. Sintek, ‘“Personalization in
distributed e-learning environments,” in WWW Alt. *04: Proceedings of

[39]

[40]

(41]

[42]

[43]

the 13th international World Wide Web conference on Alternate track
papers & posters. New York, NY, USA: ACM, 2004, pp. 170-179.
R. Agrawal and E. L. Wimmers, “A framework for expressing and
combining preferences,” in SIGMOD ’00: Proceedings of the 2000 ACM
SIGMOD international conference on Management of data. New York,
NY, USA: ACM, 2000, pp. 297-306.

N. Spyratos and V. Christophides, “Querying with preferences in a
digital library,” in Federation over the Web. Dagstuhl Seminar (N
05182), May 2005, vol. LNAI 3847.

S. Dring, S. Fischer, W. Kieflling, and T. Preisinger, “Optimizing the
catalog search process for e-procurement platforms,” deec, vol. 0, pp.
39-48, 2005.

C. Ullrich, “Course generation based on htn planning,” in Proceedings
of 13th Annual Workshop of the SIG Adaptivity and User Modeling in
Interactive Systems, Saarbrcken, Germany, 2005.

B. Satzger, M. Endres, and W. KieBling, E-Commerce and Web Tech-
nologies. Springer Berlin / Heidelberg, 2006, ch. A Preference-Based
Recommender System.

Philipp Kirger is a Ph.D. student at the University
of Hannover’s Computer Science Department and
a research scientist at the L3S Research Center. He
received his master degree in computer science from
Saarland University, Saarbriicken, Germany.

Daniel Olmedilla is a project leader at L3S Re-
search Center and the University of Hannover since
2005. Before joining L3S as researcher in 2002,
he worked as consultant and project manager in IT
companies. He received his master degree and Ph.D.
in computer science from Universidad Autnoma de
Madrid, Spain.

Fabian Abel started his Ph.D. in 2007 at the L3S
Research Center. He received his master degree in
computer science at the Leibniz University Han-
nover, Germany. In the context of his Ph.D. he is
concerned with Social Media, Semantic Web, user
modeling, and personalization techniques in social
systems.

Eelco Herder received his Ph.D. in Computer Sci-
ence at the University of Twente, the Netherlands.
A long-term Web usage study, in collaboration
with the University of Hamburg, was awarded at
the WWW2006 conference. Currently, he works at
the L3S Research Center in Hannover, Germany.
His main research interests include user modeling,
Web personalization, usability, interaction design
and user studies.

Wolf Siberski since 2005 project leader at L3S
Research Center of University of Hannover. Before
joining L3S as researcher in 2001, he worked as
software architect and internal consultant in IT com-
panies. He received his PhD in computer science
from University of Hannover and his master degree
in computer science from University of Hamburg,
Germany.

